lunes, 2 de junio de 2014

Distribución Normal

Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada por la frecuencia o normalidad con la que ciertos fenómenos tienden a parecerse en su comportamiento a esta distribución.
Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.
En otras ocasiones, al considerar distribuciones binomiales, tipo B(n,p), para un mismo valor de p y valores de n cada vez mayores, se ve que sus polígonos de frecuencias se aproximan a una curva en "forma de campana".
En resumen, la importancia de la distribución normal se debe principalmente a que hay muchas variables asociadas a fenómenos naturales que siguen el modelo de la normal.
  • Caracteres morfológicos de individuos (personas, animales, plantas,…) de una especie, p. ejm. Tallas, pesos, envergaduras, diámetros, perímetros…
  • Caracteres fisiológicos, por ejemplo; efecto de una misma dosis de un fármaco, o de una misma cantidad de abono.
  • Caracteres sociológicos, por ejemplo: consumo de cierto producto por un mismo grupo de individuos, puntuaciones de examen.
  • Caracteres psicológicos, por ejemplo: cociente intelectual, grado de adaptación a un medio……
  • Errores cometidos al medir ciertas magnitudes.
  • Valores estadísticos maestrales, por ejemplo: la media.
  • Otras distribuciones como la binomial o la de Poisson son aproximaciones normales…
Y en general cualquier característica que se obtenga como suma de muchos factores.
Una distribución normal de media μ y desviación típica σse designa por N(μ, σ). Su gráfica es la campana de Gauss:
gráfica
El área del recinto determinado por la función y el eje de abscisas es igual a la unidad.
Al ser simétrica respecto al eje que pasa por x = µ, deja un área igual a 0.5 a la izquierda y otra igual a 0.5 a la derecha.
La probabilidad equivale al área encerrada bajo la curva.

Distribución normal estándar

N(0, 1)

La distribución normal estándar, o tipificada o reducida, es aquella que tiene por media el valor ceroμ =0, y pordesviación típica la unidad, σ =1.
gráfica de la distribución normal  estándar o tipificada
La probabilidad de la variable X dependerá del área del recinto sombreado en la figura. Y para calcularla utilizaremos una tabla.
La distribución normal fue estudiada por Gauss. Se trata de una variable aleatoria continua (la variable puede tomar cualquier valor real). La función de densidad tiene forma de campana.
Dos parámetros determinan una distribución normal: la media y la desviación típica. Cuanto mayor sea la desviación típica mayor es la dispersión de la variable.
La distribución normal es simétrica respecto de la media.
La media está representada por un triángulo y se puede interpretar como un punto de equilibrio. Al arrastrarlo se modifica también la media. El mismo efecto tiene el mover el punto correspondiente en la cúspide de la curva.
Arrastrando el otro punto sobre la curva (que es uno de los dos puntos de inflexión de la curva) se modifica la desviación típica.
Podemos ver la función de distribución acumulada y cómo cambia al modificar la media (simple traslación) y la desviación típica (reflejando la mayor o menor dispersión de la variable).
Los puntos grises controlan la escala vertical y horizontal de la gráfica y pulsando el boton derecho y arrastrando podemos moverla a derecha e izquierda.


Distribución binomial

Las características de esta distribución son:
a)      En los experimentos que tienen este tipo de distribución, siempre se esperan dos tipos de resultados, ejem. Defectuoso, no defectuoso, pasa, no pasa, etc, etc., denominados arbitrariamente “éxito” (que es lo que se espera que ocurra) o “fracaso” (lo contrario del éxito).
b)      Las probabilidades asociadas a cada uno de estos resultados son constantes, es decir no cambian.
c)      Cada uno de los ensayos o repeticiones del experimento son independientes entre sí.
d)      El número de ensayos o repeticiones del experimento (n) es constante.

  A partir de un ejemplo. Desarrollaremos una fórmula que nos permita cualquier problema que tenga este tipo de distribución.
Ejemplo:
Se lanza al aire una moneda normal 3 veces, determine la probabilidad de que aparezcan 2 águilas.

Solución:
Antes de empezar a resolver este problema, lo primero que hay que hacer es identificarlo como un problema que tiene una distribución binomial, y podemos decir que efectivamente así es, ya que se trata de un experimento en donde solo se pueden esperar dos tipos de resultados al lanzar la moneda, águila o sello, cutas probabilidades de ocurrencia son constantes, cada uno de los lanzamientos es independiente de los demás y el número de ensayos o repeticiones del experimento son constantes, n = 3.

Para dar solución a este problema, lo primero que hay que hacer es un diagrama de árbol, en donde representaremos los tres lanzamientos, de ahí se obtendrá el espacio muestral y posteriormente la probabilidad pedida, usando la fórmula correspondiente.

Para calcular la media y la desviación estándar de un experimento que tenga una  distribución Binomial usaremos las siguientes fórmulas:


Media o valor esperado.


                                         

Donde:
n = número de ensayos o repeticiones del experimento
P = probabilidad de éxito o la probabilidad referente al evento del cual se desea calcular la media que se refiere la media
Q =  complemento de P


Desviación estándar.

                                      


Ejemplos:
  1. Se dice que el 75% de los accidentes de una planta se atribuyen a errores humanos. Si en un período de tiempo dado, se suscitan 5 accidentes, determine la probabilidad de que; a) dos de los accidentes se atribuyan a errores humanos, b) como máximo 1 de los accidentes se atribuya a errores de tipo humano, c) tres de los accidentes no  se atribuyan a errores humanos.

Solución:
a) n = 5
x = variable que nos define el número de accidentes debidos a errores humanos
x = 0, 1, 2,...,5 accidentes debidos a errores de tipo humano
p = p(éxito) = p(un accidente se deba a errores humanos) = 0.75
q = p(fracaso) = p(un accidente no se deba a errores humanos) = 1-p = 0.25

                                

b)     

                                             

c) En este caso cambiaremos el valor de p;
n =5
x = variable que nos define el número de accidentes que no se deben a errores de tipo humano
x = 0, 1, 2,...,5 accidentes debidos a errores humanos
p = p(probabilidad de que un accidente no se deba a errores humanos) = 0.25
q = p(probabilidad de que un accidente se deba a errores humanos) = 1-p = 0.75