Las características de esta distribución son:
a) En los experimentos que tienen este tipo de distribución, siempre se esperan dos tipos de resultados, ejem. Defectuoso, no defectuoso, pasa, no pasa, etc, etc., denominados arbitrariamente “éxito” (que es lo que se espera que ocurra) o “fracaso” (lo contrario del éxito).
b) Las probabilidades asociadas a cada uno de estos resultados son constantes, es decir no cambian.
c) Cada uno de los ensayos o repeticiones del experimento son independientes entre sí.
d) El número de ensayos o repeticiones del experimento (n) es constante.
A partir de un ejemplo. Desarrollaremos una fórmula que nos permita cualquier problema que tenga este tipo de distribución.
Ejemplo:
Se lanza al aire una moneda normal 3 veces, determine la probabilidad de que aparezcan 2 águilas.
Solución:
Antes de empezar a resolver este problema, lo primero que hay que hacer es identificarlo como un problema que tiene una distribución binomial, y podemos decir que efectivamente así es, ya que se trata de un experimento en donde solo se pueden esperar dos tipos de resultados al lanzar la moneda, águila o sello, cutas probabilidades de ocurrencia son constantes, cada uno de los lanzamientos es independiente de los demás y el número de ensayos o repeticiones del experimento son constantes, n = 3.
Para dar solución a este problema, lo primero que hay que hacer es un diagrama de árbol, en donde representaremos los tres lanzamientos, de ahí se obtendrá el espacio muestral y posteriormente la probabilidad pedida, usando la fórmula correspondiente.
Para calcular la media y la desviación estándar de un experimento que tenga una distribución Binomial usaremos las siguientes fórmulas:
Media o valor esperado.
Donde:
n = número de ensayos o repeticiones del experimento
P = probabilidad de éxito o la probabilidad referente al evento del cual se desea calcular la media que se refiere la media
Q = complemento de P
Desviación estándar.
Ejemplos:
- Se dice que el 75% de los accidentes de una planta se atribuyen a errores humanos. Si en un período de tiempo dado, se suscitan 5 accidentes, determine la probabilidad de que; a) dos de los accidentes se atribuyan a errores humanos, b) como máximo 1 de los accidentes se atribuya a errores de tipo humano, c) tres de los accidentes no se atribuyan a errores humanos.
Solución:
a) n = 5
x = variable que nos define el número de accidentes debidos a errores humanos
x = 0, 1, 2,...,5 accidentes debidos a errores de tipo humano
p = p(éxito) = p(un accidente se deba a errores humanos) = 0.75
q = p(fracaso) = p(un accidente no se deba a errores humanos) = 1-p = 0.25
b)
c) En este caso cambiaremos el valor de p;
n =5
x = variable que nos define el número de accidentes que no se deben a errores de tipo humano
x = 0, 1, 2,...,5 accidentes debidos a errores humanos
p = p(probabilidad de que un accidente no se deba a errores humanos) = 0.25
q = p(probabilidad de que un accidente se deba a errores humanos) = 1-p = 0.75
No hay comentarios:
Publicar un comentario