lunes, 2 de junio de 2014

Distribución Normal

Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada por la frecuencia o normalidad con la que ciertos fenómenos tienden a parecerse en su comportamiento a esta distribución.
Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.
En otras ocasiones, al considerar distribuciones binomiales, tipo B(n,p), para un mismo valor de p y valores de n cada vez mayores, se ve que sus polígonos de frecuencias se aproximan a una curva en "forma de campana".
En resumen, la importancia de la distribución normal se debe principalmente a que hay muchas variables asociadas a fenómenos naturales que siguen el modelo de la normal.
  • Caracteres morfológicos de individuos (personas, animales, plantas,…) de una especie, p. ejm. Tallas, pesos, envergaduras, diámetros, perímetros…
  • Caracteres fisiológicos, por ejemplo; efecto de una misma dosis de un fármaco, o de una misma cantidad de abono.
  • Caracteres sociológicos, por ejemplo: consumo de cierto producto por un mismo grupo de individuos, puntuaciones de examen.
  • Caracteres psicológicos, por ejemplo: cociente intelectual, grado de adaptación a un medio……
  • Errores cometidos al medir ciertas magnitudes.
  • Valores estadísticos maestrales, por ejemplo: la media.
  • Otras distribuciones como la binomial o la de Poisson son aproximaciones normales…
Y en general cualquier característica que se obtenga como suma de muchos factores.
Una distribución normal de media μ y desviación típica σse designa por N(μ, σ). Su gráfica es la campana de Gauss:
gráfica
El área del recinto determinado por la función y el eje de abscisas es igual a la unidad.
Al ser simétrica respecto al eje que pasa por x = µ, deja un área igual a 0.5 a la izquierda y otra igual a 0.5 a la derecha.
La probabilidad equivale al área encerrada bajo la curva.

Distribución normal estándar

N(0, 1)

La distribución normal estándar, o tipificada o reducida, es aquella que tiene por media el valor ceroμ =0, y pordesviación típica la unidad, σ =1.
gráfica de la distribución normal  estándar o tipificada
La probabilidad de la variable X dependerá del área del recinto sombreado en la figura. Y para calcularla utilizaremos una tabla.
La distribución normal fue estudiada por Gauss. Se trata de una variable aleatoria continua (la variable puede tomar cualquier valor real). La función de densidad tiene forma de campana.
Dos parámetros determinan una distribución normal: la media y la desviación típica. Cuanto mayor sea la desviación típica mayor es la dispersión de la variable.
La distribución normal es simétrica respecto de la media.
La media está representada por un triángulo y se puede interpretar como un punto de equilibrio. Al arrastrarlo se modifica también la media. El mismo efecto tiene el mover el punto correspondiente en la cúspide de la curva.
Arrastrando el otro punto sobre la curva (que es uno de los dos puntos de inflexión de la curva) se modifica la desviación típica.
Podemos ver la función de distribución acumulada y cómo cambia al modificar la media (simple traslación) y la desviación típica (reflejando la mayor o menor dispersión de la variable).
Los puntos grises controlan la escala vertical y horizontal de la gráfica y pulsando el boton derecho y arrastrando podemos moverla a derecha e izquierda.


Distribución binomial

Las características de esta distribución son:
a)      En los experimentos que tienen este tipo de distribución, siempre se esperan dos tipos de resultados, ejem. Defectuoso, no defectuoso, pasa, no pasa, etc, etc., denominados arbitrariamente “éxito” (que es lo que se espera que ocurra) o “fracaso” (lo contrario del éxito).
b)      Las probabilidades asociadas a cada uno de estos resultados son constantes, es decir no cambian.
c)      Cada uno de los ensayos o repeticiones del experimento son independientes entre sí.
d)      El número de ensayos o repeticiones del experimento (n) es constante.

  A partir de un ejemplo. Desarrollaremos una fórmula que nos permita cualquier problema que tenga este tipo de distribución.
Ejemplo:
Se lanza al aire una moneda normal 3 veces, determine la probabilidad de que aparezcan 2 águilas.

Solución:
Antes de empezar a resolver este problema, lo primero que hay que hacer es identificarlo como un problema que tiene una distribución binomial, y podemos decir que efectivamente así es, ya que se trata de un experimento en donde solo se pueden esperar dos tipos de resultados al lanzar la moneda, águila o sello, cutas probabilidades de ocurrencia son constantes, cada uno de los lanzamientos es independiente de los demás y el número de ensayos o repeticiones del experimento son constantes, n = 3.

Para dar solución a este problema, lo primero que hay que hacer es un diagrama de árbol, en donde representaremos los tres lanzamientos, de ahí se obtendrá el espacio muestral y posteriormente la probabilidad pedida, usando la fórmula correspondiente.

Para calcular la media y la desviación estándar de un experimento que tenga una  distribución Binomial usaremos las siguientes fórmulas:


Media o valor esperado.


                                         

Donde:
n = número de ensayos o repeticiones del experimento
P = probabilidad de éxito o la probabilidad referente al evento del cual se desea calcular la media que se refiere la media
Q =  complemento de P


Desviación estándar.

                                      


Ejemplos:
  1. Se dice que el 75% de los accidentes de una planta se atribuyen a errores humanos. Si en un período de tiempo dado, se suscitan 5 accidentes, determine la probabilidad de que; a) dos de los accidentes se atribuyan a errores humanos, b) como máximo 1 de los accidentes se atribuya a errores de tipo humano, c) tres de los accidentes no  se atribuyan a errores humanos.

Solución:
a) n = 5
x = variable que nos define el número de accidentes debidos a errores humanos
x = 0, 1, 2,...,5 accidentes debidos a errores de tipo humano
p = p(éxito) = p(un accidente se deba a errores humanos) = 0.75
q = p(fracaso) = p(un accidente no se deba a errores humanos) = 1-p = 0.25

                                

b)     

                                             

c) En este caso cambiaremos el valor de p;
n =5
x = variable que nos define el número de accidentes que no se deben a errores de tipo humano
x = 0, 1, 2,...,5 accidentes debidos a errores humanos
p = p(probabilidad de que un accidente no se deba a errores humanos) = 0.25
q = p(probabilidad de que un accidente se deba a errores humanos) = 1-p = 0.75


                 


lunes, 10 de marzo de 2014

LA PROBABILIDAD

Conceptos Básicos de Probabilidad

Experimento aleatorio
Conjunto de pruebas cuyos resultados están determinados únicamente por el azar.

Espacio muestral
Conjunto de todos los resultados posibles de un experimento aleatorio.

Punto muestral o suceso elemental
El resultado de una sola prueba de un experimento muestral.

Suceso o evento
Cualquier subconjunto de puntos muestrales.

Sucesos mutuamente excluyentes
Sucesos o eventos que no pueden ocurrir simultaneamente.

Sucesos complementarios
Dos sucesos o eventos mutuamente excluyentes cuya unión es el espacio muestral.

Sucesos independientes
Sucesos o eventos que no tienen relación entre sí; la ocurrencia de uno no afecta la ocurrencia del otro.


Sucesos dependientes
Sucesos o eventos que sí tienen relación entre sí; la ocurrencia de uno sí afecta la ocurrencia del otro.

Problemas resueltos

  • Si yo tengo una canasta llena de peras y manzanas, de las cuales hay 20 peras y 10 manzanas. ¿Qué fruta es más probable que saque al azar de la canasta?

Para este ejemplo tenemos que 30 es el total de frutas en la canasta; es decir los casos posibles. Para calcular la probabilidad de sacar una manzana mis casos favorables son 10 puesto que existen sólo 10 manzanas. Así, aplicando la fórmula obtenemos que:

P(Manzana)=10/30=1/3= 33.3% probable

Calculando igual, la probabilidad de sacar pera es:

P(Pera)=20/30=2/3= 66.7% probable

Como 66.7 es mayor que 33.3 es más probable que saque una pera, pues hay más peras que manzanas en la canasta.

  • La probabilidad de que al lanzar un dado, salga el numero 2 es de 

1/6

porque el dos es solo uno de 6 números que hay en total.




REGLAS DE LA SUMA DE LA PROBABILIDAD

Si   dos   eventos   A   y   B   son mutuamente excluyentes,    esta    regla    indica    que    la probabilidad de que ocurra uno u otro de los eventos,   es   igual   a   la   suma   de   sus probabilidades.
 P(A ó B) = P(A U B)P(A U B) = P(A)+ P (B)P(A ó B ó...ó Z) = P(A U B U...U Z)P(A U B U...UZ)= P(A)+ P(B) +... P(Z)
REGLA GENERAL DE LA ADICIÓN
Cuando   los   eventos   no   son   mutuamente excluyentes,  la probabilidad  de  la  ocurrencia conjunta  de  los  dos  eventos,  se  resta  de  la suma   de   las   probabilidades   de   los   dos eventos.P(A ó B) = P(A) + P(B) - P(A y B) En   la   teoría   de   conjuntos,   la ocurrencia conjunta hace referencia a la intersección, por lo tanto:P(A y B) = P(A ∩B)Entonces: P(A U B) = P(A) + P(B) - P(A ∩ B)



  • ¿Cuál es la probabilidad de obtener un total de 7 u 11 cuando se lanza un par de datos?

s(7)={ (1,6),(2,5),(3,4),(6,1),(5,2),(4,3) }
s(11)={ (5,6),(6,5) }


P(7)= 6/36 = 1/6

P(11)= 2/36


  • Si las probabilidades de alguien que compra un auto para elegir un color entre Verde, Blanco, Rojo o Azul, son respectivamente 0.9, 0.15, 0.21, 0.23.

Cual es la probabilidad de que un comprador adquiera un automóvil que tenga uno de esos colores.


P(V U B U R U A)= 0.9+0.15+0.21+0.23 = 0.68

Los eventos son independientes. Ya que no hay intersecciones (el auto no puede tener dos colores), simplemente se suman las probabilidades de cada color disponible para el automóvil.



Regla general para eventos dependientes

Si A y B son dos eventos dependientes, es decir, si la ocurrencia de A afecta la probabilidad de ocurrencia de B, entonces, dicha probabilidad de calcula empleando la siguiente regla:
Monografias.com
Nota:
La probabilidad del evento B, calculada bajo la suposición de que el evento A ha ocurrido, se denomina probabilidad condicional de B, dado A, y se denota por P (B/A).
Monografias.com
Ejemplos:

De una baraja estándar de 52 cartas sea A el suceso de sacar un As en la primera extracción y B sacar un As en la segunda extracción. Calcular la probabilidad de sacar dos Ases en dos extracciones sin devolver la carta extraída.
Solución:
A y B son sucesos dependientes porque la ocurrencia de A afecta la probabilidad de ocurrencia de B.
La probabilidad de que la primera carta sea un As es:
Monografias.com
Reemplazando los anteriores valores en la regla general de la multiplicación de probabilidades para eventos dependientes se obtiene:
Monografias.com


Probabilidad Condicional


Probabilidad condicional es la probabilidad de que ocurra un evento A, sabiendo que también sucede otro evento B. La probabilidad condicional se escribe P(A|B), y se lee «la probabilidad deA dado B».
No tiene por qué haber una relación causal o temporal entre A y BA puede preceder en el tiempo a B, sucederlo o pueden ocurrir simultáneamente. A puede causar B, viceversa o pueden no tener relación causal. Las relaciones causales o temporales son nociones que no pertenecen al ámbito de la probabilidad. Pueden desempeñar un papel o no dependiendo de la interpretación que se le dé a los eventos.
Un ejemplo clásico es el lanzamiento de una moneda para luego lanzar un dado. ¿Cuál es la probabilidad de obtener una cara (moneda) y luego un 6 (dado)? Pues eso se escribiría como P (Cara | 6).


  • Se seleccionan dos semillas aleatoriamente, una por una, de una bolsa que contiene 10 semillas de flores rojas y 5 de flores blancas. ¿Cuál es la probabilidad de que:

  1. La primera semilla sea roja?
  2. La segunda semilla sea blanca dado que la primera fue roja?
Solución:
  1. La probabilidad de que la primera semilla sea roja es , puesto que hay 10 semillas de flores rojas de un total de 15. Escrito con notación de probabilidad tenemos: 
  2. La probabilidad de que la segunda semilla sea blanca se ve influida por lo que salió primero, es decir esta probabilidad está sujeta a una condición, la de que la primera semilla sea roja. Este tipo de probabilidad se le llama probabilidad condicional y se denota por 
, y se lee: la probabilidad de B2 dado R1.
Esta probabilidad , puesto que todavía hay 5 semillas blancas en un total de 14 restantes.


Teorema de Bayes
La interpretación más aceptada del teorema de Bayes, es que su estructura permite el calculo de probabilidades después de haber sido realizado un experimento (probabilidades aposteriori), basándose en el conocimiento de la ocurrencia de ciertos eventos que dependan del evento estudiado, o sea, se parte de probabilidades conocidas antes de efectuar el experimento (probabilidades apriori), las cuales son afectadas por las probabilidades propias del experimento (las que aparecen durante la ocurrencia del evento).

Continuando nuestro análisis sobre el teorema de Bayes, la probabilidad condicional deAi dado B, para cualquier i, es:


Aplicando en el numerador la Regla de Multiplicación P(AiÇB) = P(Ai) P(B|Ai) y en el denominador el Teorema de Probabilidad Total  P(B) = P(A1) P(B | A1) + P(A2) P(B | A2) + . . . + P(An) P(B | An), obtenemos la ecuación que representa al:



En la teoría de probabilidad el teorema de Bayes es un resultado enunciado por Thomas Bayes en 1763 que expresa la probabilidad condicional de un evento aleatorio A dado B en términos de la distribución de probabilidad condicional del evento B dado A y la distribución de probabilidad marginal de sólo A.
Ejemplo:
  • En la sala de pediatría de un hospital, el 60% de los pacientes son niñas. De los niños el 35% son menores de 24 meses. El 20% de las niñas tienen menos de 24 meses. Un pediatra que ingresa a la sala selecciona un infante al azar.

a. Determine el valor de la probabilidad de que sea menor de 24 meses.
b. Si el infante resulta ser menor de 24 meses. Determine la probabilidad que sea una niña.
SOLUCIÓN:
Se definen los sucesos:
Suceso H: seleccionar una niña.
Suceso V: seleccionar un niño.
Suceso M: infante menor de 24 meses.
En los ejercicios de probabilidad total y teorema de bayes, es importante identificar los sucesos que forman la población y cuál es la característica que tienen en común dichos sucesos. Estos serán los sucesos condicionados.
a. En este caso, la población es de los infantes. Y la característica en común es que sean menores de 24 meses. Por lo tanto, la probabilidad de seleccionar un infante menor de 24 meses es un ejemplo de probabilidad total. Su probabilidad será:
 
b. Para identificar cuando en un ejercicio se hace referencia al teorema de bayes, hay quepartir de reconocer esta es una probabilidad condicionada y que la característica común de los sucesos condicionantes ya ha ocurrido. Entonces, la probabilidad de que sea niña una infante menor de 24 meses será:

  • A un congreso asisten 100 personas, de las cuales 65 son hombres y 35 son mujeres. Se sabe que el 10% de los hombres y el 6% de las mujeres son especialistas en computación. Si se selecciona al azar a un especialista en computación ¿Cuál es la probabilidad de que sea mujer?


Solución

Definamos los eventos:

H:    Sea un  hombre
M:   Sea una mujer
E:         La persona sea especialista en computación

Tenemos que:

                
                

Por lo tanto:



martes, 11 de febrero de 2014

Permutaciones Y Combinaciones

Permutación:

         Un arreglo se llama una permutación. Se trata de la reorganización de los objetos o símbolos en secuencias diferenciables. Cuando nos pusimos las cosas en orden, podemos decir que hemos hecho un acuerdo. Cuando cambiamos el orden, decimos que hemos cambiado la disposición. Así que cada uno de los arreglos que se pueden hacer mediante la adopción de algunas o todas de una serie de cosas que se conoce como permutación.

Combinación:
         Una combinación es una selección de algunas o todas de una serie de objetos diferentes. Es una colección sin orden de una permutación única sizes.In el orden de aparición de los objetos o la disposición es importante, pero en combinación el orden de aparición de los objetos no es importante.


Formula:

Permutación = nPr = n! / (n-r)!
Combinación= nCr = nPr / r!
donde,
              n, r no son números enteros negativos yr<=n.
             r es el tamaño de cada permutación.
             n es el tamaño del conjunto de elementos que se permutan.
              ! es el operador factorial.


Ejemplo:

Encontrar el número de permutaciones y combinaciones: n = 6, r = 4.

  Paso1:Encontrar el factorial de 6.
            6! = 6*5*4*3*2*1 = 720

  Paso2:Encontrar el factorial de 6-4.
            (6-4)! = 2! = 2

  Paso 3: Brecha 720 entre 2.
            Permutación = 720/2 = 360

  Paso 4:Encontrar el factorial de 4.
            4! = 4*3*2*1 = 24

  Paso 5:Brecha 360 entre 24.
            Combinación = 360/24 = 15


Ejemplo:

¿Cuántos números de 5 cifras diferentes se puede formar con los dígitos: 1, 2, 3, 4, 5?
m = 5     n = 5
 entran todos los elementos. De 5 dígitos entran sólo 3.
 importa el orden. Son números distintos el 123, 231, 321.
No se repiten los elementos. El enunciado nos pide que las cifras sean diferentes.
Permutaciones

lunes, 10 de febrero de 2014

Teoría De Conjuntos

Los objetos que forman un conjunto son llamados miembros o elementos. Por ejemplo el conjunto de las letras de alfabeto; a, b, c, ..., x, y, z. que se puede escribir así:

{ a, b, c, ..., x, y, z}
Dos conjuntos son iguales si tienen los mismos elementos, por ejemplo:
El conjunto { a, b, c } también puede escribirse:
{ a, c, b }, { b, a, c }, { b, c, a }, { c, a, b }, { c, b, a }

En teoría de conjuntos se acostumbra no repetir a los elementos por ejemplo:
El conjunto { b, b, b, d, d } simplemente será { b, d }.

SUBCONJUNTO

Sean los conjuntos A={ 0, 1, 2, 3, 5, 8 } y B={ 1, 2, 5 }
En este caso decimos que B esta contenido en A, o que B es subconjunto de A.

OPERACIONES CON CONJUNTOS

UNION
La unión de dos conjuntos A y B la denotaremos por A È B y es el conjunto formado por los elementos que pertenecen al menos a uno de ellos ó a los dos. Lo que se denota por:
È B = { x/x Î A ó x Î B }

Ejemplo: Sean los conjuntos A={ 1, 3, 5, 7, 9 } y B={ 10, 11, 12 }
È B ={ 1, 3, 5, 7, 9, 10, 11, 12 }



INTERSECCION
Sean A={ 1, 2, 3, 4, 5, 6, 8, 9 } y B={ 2, 4, 8, 12 }
Los elementos comunes a los dos conjuntos son: { 2, 4, 8 }. A este conjunto se le llama intersección de A y B; y se denota por A Ç B, algebraicamente se escribe así:
A Ç B = { x/x Î A y x Î B }
Y se lee el conjunto de elementos x que están en A y están en B.

Ejemplo:
Sean Q={ a, n, p, y, q, s, r, o, b, k } y P={ l, u, a, o, s, r, b, v, y, z }
Ç P={ a, b, o, r, s, y }




CONJUNTO VACIO
Un conjunto que no tiene elementos es llamado conjunto vacío ó conjunto nulo lo que denotamos por el símbolo Æ .

Por ejemplo:
Sean A={ 2, 4, 6 } y B={ 1, 3, 5, 7 } encontrar A Ç B.
Ç B= { }
El resultado de A Ç B= { } muestra que no hay elementos entre las llaves, si este es el caso se le llamará conjunto vacío ó nulo y se puede representar como:
Ç B=Æ



CONJUNTOS AJENOS
Sí la intersección de dos conjuntos es igual al conjunto vacío, entonces a estos conjuntos les llamaremos conjuntos ajenos, es decir:
Si A Ç B = Æ entonces A y B son ajenos.




COMPLEMENTO
El complemento de un conjunto respecto al universo U es el conjunto de elementos de U que no pertenecen a A y se denota como A' y que se representa por comprehensión como:
A'={ x Î U/x y x Ï A }

Ejemplo:
Sea U = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }
A= { 1, 3, 5, 7, 9 } donde A Ì U
El complemento de A estará dado por:
A'= { 2, 4, 6, 8 }




DIFERENCIA
Sean A y B dos conjuntos. La diferencia de A y B se denota por A-B y es el conjunto de los elementos de A que no están en B y se representa por comprehensión como:
A - B={ x/x Î A ; X Ï B }

Ejemplo:
Sea A= { a, b, c, d } y
B= { a, b, c, g, h, i }
A - B= { d }
En el ejemplo anterior se observa que solo interesan los elementos del conjunto A que no estén en B. Si la operación fuera B - A el resultado es
B – A = { g, h, i }
E indica los elementos que están en B y no en A.


Principio Fundamental del Conteo

Principio que establece que todos los posibles resultados en una situación dada se pueden encontrar multiplicando el número de formas en la que puede suceder cada evento.

Tutorial
https://www.youtube.com/watch?v=fdHxa3e5nIo